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A mechanistic study of a complex chemical process
is one of the most important tasks in chemical kinetics.
The necessity of estimating kinetic parameters from
experimental data (which is called the inverse kinetic
problem) was realized in the 1970–1980s. Both mathe-
maticians [1, 2] and kinetics researchers [3, 4] were
involved in the development of the methods for param-
eter estimation. To solve these problems, the results of
measurements of reactant concentrations at different
times of the process (that is, kinetic curves) were tradi-
tionally used. However, the concentrations of many
intermediate species are so low that they cannot be
measured, and therefore experimental data are not com-
plete, and the problem of kinetic parameter estimation
will not have a unique solution. This may lead to un-
identifiability of the system [2], which is probably the
main difficulty in parameter estimation. However, this
aspect is beyond the scope of this work. At the same
time, parameter estimation is topical for both scientific
research and solving practical problems (e.g., for on-
line control of a chemical process). Spectral measure-
ments are one of the fastest and most readily available
methods for obtaining online information on the pro-
cess, although the results of such measurements require
additional mathematical processing. In this paper, we
consider the problem of extracting kinetic information
from spectral data. This task is complicated by the fact
that the spectra of all or some reactants are assumed to
be unknown.

We can distinguish two main radically different
approaches to solving the problem of parameter estima-
tion. The first is the so-called soft approach [5–7]
according to which the problem is solved in two stages.
Initially a separate soft model is constructed that per-
forms “soft calibration” of spectra against reactant con-
centrations. Then, concentrations predicted by this
model are used in “hard” parameter fitting (i.e., kinetic
parameter estimation for a chemical process). This

approach often does not provide the required accuracy.
According to the other approach, hard physicochemical
modeling is applied [4, 8] based on the main kinetic
principles, which allows one to obtain very accurate
parameter estimates. However, hard methods for solv-
ing the inverse problems can be applied when pure
component spectra are known. Otherwise a researcher
meets the problem of simultaneous nonlinear estima-
tion of many unknown parameters. The processing of
several characteristic spectral lines simplifies the prob-
lem, but a considerable portion of information is
ignored, which again leads to diminished accuracy of
the results.

For solving the inverse problems, we propose that
the method of successive Bayesian estimation (SBE)
[9, 10] be used which performs conceptual physico-
chemical modeling and makes it possible to avoid diffi-
culties associated with simultaneous estimation of
many unknown parameters. The SBE method takes into
account the fact that not all of the unknown parameters
are equivalent: there are kinetic parameters 

 

k

 

 that are
common for the whole model and there are spectral
parameters 

 

P

 

 applicable to the proper wavelength 

 

x

 

.
The Bayesian approach makes it possible to use the
whole body of experimental data by consecutively ana-
lyzing one wavelength after another. To preserve
kinetic information obtained at the preceding stage, it is
transformed into the Bayesian a priori information and
is taken into account at the next stage. This makes it
possible to divide the whole task of parameter estima-
tion into a chain of smaller tasks so that having the loss
in the “pathway” we have the gain in the “strength.”

This method is illustrated by the two examples of
the successive two-step reaction
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The first example is a model where experimental
data were simulated to test the efficiency of the
approach. The second example is real IR spectra
obtained in the epoxidation of 2,5-di-

 

tert

 

-butyl-1,4-
benzoquinone. Simulated data make it possible to com-
pare estimates with the true values of parameters and
thus to check the applicability of the SBE method. Real
data make it possible to compare the SBE method with
other methods for estimating the rate constants using
spectral data.

SIMULATED DATA

A model that describes the kinetics of changes in
spectral data in the course of a chemical reaction can be
described as a function of time 

 

t

 

, the wavelength 

 

x

 

, and
unknown kinetic parameters 

 

k

 

:

 

(2)

 

Here 

 

y

 

 is the spectral signal, 

 

C

 

i

 

 is the concentration of
components, 

 

p

 

i

 

 is the pure component spectra, and 

 

l

 

 is
the number of reactants. In the discrete case when the
spectra are separated into 

 

m

 

 wavelengths and the time
is represented by 

 

n

 

 points, one can use the matrix nota-
tion:

 

Y

 

 = 

 

CP

 

 + 

 

E

 

. (3)

 

Here 

 

Y

 

 is the (

 

n

 

 × 

 

m

 

) matrix of spectral data; 

 

C

 

 is the
(

 

n

 

 × 

 

l

 

) matrix of concentrations, which depends on the
unknown kinetic parameters, and 

 

P

 

 is the unknown (

 

l

 

 × 

 

m

 

)
matrix of pure component spectra. Furthermore, model (3)
contains the (

 

n

 

 × 

 

m

 

) matrix of errors 

 

E

 

. In such formal
consideration, the nature of measured spectra (IR, UV,
NMR, etc.) is irrelevant. It is only important that the
measured signal 

 

Y

 

(

 

t

 

, 

 

x

 

, 

 

k

 

)

 

 is an explicit function of time

 

t

 

 and the “wavelength” 

 

x

 

 and an implicit function of the
rate constants 

 

k

 

 through the concentrations 

 

C

 

. Of
course, Eq. (3) is only true in the ideal case. In practice,
data contain a shift, baseline errors, interactions
between spectra, etc. These errors can sometimes be
corrected by special transformations of raw data. How-
ever, the SBE method does not assume the linearity of
Eq. (3), and can be applied to complex nonideal mod-
els.

The matrix of concentrations 

 

C

 

 can be obtained
from kinetic model (1), which has an analytical solu-
tion:

 

(4)

y t x k, ,( ) Ci t k,( ) pi x( ).
i 1=

l

∑=

A A0 k1t–( ),exp=

B
K1A0

k1 k2–
--------------- k2t–( )exp k1t–( )exp–[ ] B0 k2t–( ),exp+=

C A0 B0 C0+ +=

+
A0

k1 k2–
--------------- k2 k1t–( )exp k1 k2t–( )exp–[ ] B0 k2t–( ).exp–

 

Here the same notation for the reaction components (A,
B, and C) and for their concentrations [A] = 

 

A

 

, [B] = 

 

B

 

,
[C] = 

 

C

 

 is used, which, of course, is not correct but sim-
plifies formulas.

Data for the simulated example were calculated
using Eqs. (4) for the following values of initial concen-
trations: 

 

A

 

0

 

 = 1, 

 

B

 

0

 

 = 

 

C

 

0

 

 = 0. The “true” values of the
constants were chosen as follows: 

 

k

 

1

 

 = 1

 

 and 

 

k

 

2

 

 = 0.5;
the observation points where the spectra were measured
were 

 

t

 

 = 0, 2, 4, 6, 8, and 10.
Thus, the number n of observations was 6. Few

observation points were taken on purpose to create
more difficulties in parameter estimation. Six points is
the minimum number for parameter estimation from
one kinetic curve corresponding to any wavelength to
be possible. Indeed, the number of unknown parame-
ters in such a model is 5: two kinetic and three spectral
parameters.

The matrix of spectra of individual components P
was constructed in the usual manner using overlapping
Gaussian spectral peaks. Each spectrum p was normal-
ized so that max(p) = 1. They were separated into 53
(m) wavelengths. The physical nature of wavelengths x
is completely unimportant for the simulated example,
and we will use some arbitrary wavelengths. These val-
ues are just numbers ranging from 1 to 53.

The matrix of experimental data Y was calculated
using Eq. (3), where the matrix of concentrations C is
given by system (4). Furthermore, white noise was
added to these data with an error of 3%. These values
are shown in Fig. 1, where curves represent exact val-
ues and points refer to experimental data containing
random errors. Such spectra are rather difficult. They
were constructed to demonstrate that the proposed
approach can successfully be applied to complex spec-
tral data. In the simulated example, all spectral values
are nonnegative, and we will use this information in
data processing. Simulated data were published in [11].

THE METHOD OF SUCCESSIVE
BAYESIAN ESTIMATION

Our goal is to find the unknown kinetic parameters
k = (k1, k2)t using spectral data Y described in the form
of a (6 × 53) matrix. If the vectors p, q, and r of the con-
centrations of reactants A, B, and C are known, the
inverse kinetic problem [12] is rather simple: one has to
find the minimum of the sum of squares:

(5)

where functions A, B, and C are described by Eqs. (4),
and pi , qi , and ri are the known preset values. However,
if at least one spectrum p, q, or r is unknown (which is
quite usual), the situation radically changes. It is in
practice very difficult to find the minimum of sum (5)
with respect to 161 unknown parameters (2 kinetic

min
k

Yij piA ti k,( ) qiB ti k,( ) riC ti k,( )–––[ ]2,
j 1=

n

∑
i 1=

m

∑
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parameters and 53 spectral values for each of the three
reactants) due to the problem of ill-conditioned matri-
ces.

The SBE method may help in solving the problem
of parameter estimation. This approach was described
in [9, 13] where all necessary theorems were proven;
the appendix contains the main formulas of the method.
The main idea of the SBE method consists in separating
the initial set of data into several parts (series). Param-
eters are estimated successively, one series after
another, using the maximum likelihood method (MLM)
[12]. Results obtained at the preceding stage are used as
a priori values in the Bayesian form at a next step. The
first initial portion of data is processed using the ordi-
nary least-squares method (LSM) without a priori
information. In the course of the SBE procedure, a
sequence of parameter estimates is constructed. The
last member in this series is the final estimate in the
SBE method. It was shown in [9] that in the linear case,
the method gives the same estimates as the conven-
tional LSM. Therefore, the result of the SBE method is
independent of the order in which data series are pro-
cessed. In the nonlinear case, the situation is more com-
plex, but these properties are fulfilled asymptotically.

For the task of estimating kinetic parameters k1 and
k2, the SBE method can be described as the following
algorithm:

Step 0 (Initial step). Several wavelengths x1, x2… are
chosen (usually 3–6) and the corresponding spectral
data Y1, Y2, … are processed together using the stan-
dard LSM method (9)–(12) (hereafter we refer to the
formulas in the appendix).

Step 1. Results obtained at step 0 (estimated kinetic
parameters, the F matrix, and other a posteriori infor-
mation) are recalculated into the a priori information
according to formulas (28)–(31).

Step 2. A new wavelength xi is chosen, and the cor-
responding spectral data Yi are processed separately
using the MLM and taking into account a priori infor-
mation obtained in step 1 (see the table in the Appendix)

Last step. Steps 1 and 2 are repeated until all wave-
lengths have been taken into account and all estimates
obtained.

As shown in the Appendix, here one should use a
priori information of the first type, because for all
wavelengths, the error variance is the same. Parameters
k1 and k2 are considered as common for all wave-
lengths, whereas pi, qi, and ri are partial parameters.

PROCESSING OF SIMULATED DATA

Initial Procedure (Step Zero)

The SBE method requires the initial step where
kinetic data are processed without a priori information
(Step 0). Sometimes this step may cause a problem. In
the example under consideration, the processing of
kinetics for one wavelength is difficult because there
are only 6 measurements for estimating 5 unknown
parameters. Only some wavelengths allow such treat-
ment, for instance conditional wavelength 16 does (see
Fig. 2), but most do not.

However, it is possible to collect several wave-
lengths and treat the corresponding kinetic data
together. In the example under consideration, it was

0.2

0 10

Spectral signal

 Conditional wavelength

1.0

20 30 40 50

0.8

0.6

0.4

1

2

3

5

6

4

1
2
3
4
5
6

Fig. 1. Simulated data: “true” spectra (curves) and “experimental” values (points) at t = (1) 0, (2) 2, (3) 4, (4) 6, (5) 8, and (6) 10.
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found that kinetic data for any four wavelengths may
solve the problem of the zero step. The data contain
24 measurements for estimating 14 unknown parame-
ters. These can be the first, last, or any four wavelengths
chosen at random. Using the results of this step, one
may construct a priori information and begin the SBE
procedure.

Figure 2 shows the example of such initial data.
These kinetic curves are used in a random SBE proce-
dure described below.

Estimating Kinetic (Common) Parameters

It is known that in the general case the order in
which data are processed by the SBE method affects the
results of estimating a nonlinear model. However, from
the practical standpoint, this effect is insignificant. To
illustrate this idea we performed successive estimation
using various orders of conventional wavelengths. The
following sequences were considered: the direct order
(i.e., 1, 2, 3, 4, 5, …, 53), the reverse order (i.e., 53, 52,
51, 50, 49, …, 1), and a random order (i.e., 16, 5, 29, 8,
41, …). The first four numbers in these sequences cor-
respond to wavelengths used in the initial step. The
results are presented in Figs. 3a–3c.

Curves 1 and 2 show how the estimates of kinetic
parameters change in the course of the successive esti-
mation. Shadowed regions (1', 1'', 2', 2'') around curves
demonstrate uncertainties of the estimates. They are
formed by standard deviations added to (subtracted
from) estimated parameters. Both the upper (k1) and
lower (k2) estimates are shown on each plot. Dashed
lines reflect the “true” values of kinetic constants. All
data are shown depending on the numbers that are con-
ditional wavelengths in the order (from left to right)
they are used in the SBE procedure (x-axis). The first
four points on each plot show the estimation of results
at the initial step.

It is seen that, although for different orders of pro-
cessing the intermediate estimates are different, final
estimates are very close. Figure 3d illustrates this con-
clusion and shows confidence ellipses (for a probability
of 0.95) for all final results of the SBE procedure. Each
ellipse and the label in its center represent the SBE with
the corresponding order of spectrum processing. If we
compare the trajectories for various methods of pro-
cessing, it is noticeable that intermediate estimates and
their uncertainties indeed depend on the order of the
wavelengths. It is probable that the direct order is the
best (Fig. 3a), because both the estimates and the devi-
ations are changed smoothly and slowly without steps.
Another interesting result can be seen in Fig. 3b, which
shows the successive estimation with wavelengths in
reverse order. The initial step provides a poor estimate
of the parameter k1. In the subsequent steps, uncertainty
diminishes. However, these values are still far from the
final results and only the two last wavelengths 2 and 1
drastically change the estimate and its deviation and
increase the estimates to the final general level.

Of course, all these conclusions are correct for the
example under consideration in which the spectra are as
in Fig. 1. For other cases, the best order may be com-
pletely different. Let us consider this issue in more
detail and begin with what causes the most problems
with SBE from step zero.

It is seen from Fig. 3 that a successful choice of the
initial wavelengths may considerably improve the esti-
mation procedure (plot a), whereas a bad choice can
make it worse (plot b). To automate the choice of the
order of calculations, we propose use of the following
simple expedient. It is clear that kinetic curves with
more pronounced changes are more informative. More-
over, some nonmonotonic curves with extremums can
be processed well. By combining these ideas, we obtain
the following empirical criterion for estimating the
comparative information content of kinetic curves:

(6)

Here, tj is the value of time (predictor), Yj is the kinetic
parameter (response), and n is the number of measure-
ments. It can be seen that the main term in this expres-
sion is the length of a curve. The greater the value of the
criterion L, the more informative the kinetic curve. The
straight line parallel to the axis t is the least informative;
L = 0. For instance, curves shown in Fig. 4 have the fol-
lowing characteristics: L(16) = 0.0476, L(5) = 0.0286,
L(29) = 0.0174, and L(8) = 0.0007. If one arranges all
wavelengths in order of decreasing information content
of the corresponding kinetic data, one may expect the
“optimal” result of SBE. Figure 4 confirms the correct-
ness of this approach.

L t j t j 1––( )2 Y j Y j 1––( )2+
j 1=

n

∑ tm t1–( ).–=
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Fig. 2. Kinetic data used at the initial step of the SBE pro-
cedure with a random order of wavelengths x = (1) 5, (2) 8,
(3)  16, and (4) 25.
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Fig. 3. Intermediate results of SBE rate constants depending on the order of wavelengths (a–c) and 0.95-confidence ellipses for the
final estimates (d). On plots a–c: (1) k1 estimates, (2) k2 estimates; (1', 1'', 2', 2'') boundaries of the regions of standard deviations;
(1''', 2''') “true” values of parameters. On plot d ellipses and points show (1) direct, (2) reverse, and (3) random orders of wave-
lengths; point 4 corresponds to the “true” value of the rate constant.

Estimates of Spectral (Specific) Parameters

When common kinetic parameters k1 and k2 are esti-
mated, it is reasonable to determine the specific spectral
parameters p, q, and r. Of course, this can easily be
done. If the rate constants of the reactions are fixed at
the level of their estimates, the set of spectral parame-
ters pi , qi , and ri can be obtained for each wavelength i
using the ordinary LSM. However, the errors of such
estimates will be obtained incorrectly, because the ordi-
nary LSM cannot take into account uncertainties in the
fixed kinetic parameters.

Here we can use the Bayesian approach again. With
this goal, at the last step of the SBE procedure, the final
a posteriori information is created, which is then trans-
formed into the final a priori information using formula
(28), which only contains data on the kinetic parame-
ters.

This information is used as a priori information of
the second type (see the table in the Appendix) for each
wavelength i when the set of spectral parameters pi, qi,

and ri is estimated. Function (25) should be minimized
taking into account additional constraints:

which show that kinetic parameters should not be re-
estimated. Here Si is the sum of squares determined
in (8).

Figure 5 shows the “true” model spectra (curves 1).
The results of estimates are shown as the difference
between the estimated and “true” spectra (points 2).
The regions of three standard deviations are also shown
(2', 2''). It is seen from these plots that the estimates are
very accurate, especially for the components A and C.

SBE Method Validation Using Simulated Data

The method proposes a new approach to determin-
ing kinetic constants using spectral data. It can be used
in situations when a large amount of partial parameters
prevent common parameters from being estimated
accurately as in the task under consideration.

Si∂
ka∂

------- 0, a 1 2,,= =
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To demonstrate that this method is reliable, we per-
formed the following “validation test”. We processed
all model simulated data using the LSM. In the search,
we simultaneously estimated all 161 parameters in sum
(5). The results of the test are illustrated in Fig. 6. Points 1
and 2 in the centers of ellipses show the values esti-
mated using the SBE method and LSM, respectively.
They and the corresponding elliptical confidence
regions are very close. This calculation supports the
results of the theorem (see Appendix) consisting in that
the results of the SBE procedure asymptotically
approach the LSM estimates. It is interesting to deter-
mine whether we can trust these confidence regions. It
is known that the covariation analysis is very difficult in
a nonlinear case, whereas the use of the linearization
method is only justified when the model is close to lin-
ear. The measure of this proximity can be estimated by
the coefficient of nonlinearity, which is calculated
using the Monte Carlo method [13].

For a linear (or close to linear) model, the coefficient
should be equal to unity. The higher this coefficient, the
more nonlinear is the model under study. In our case,
the coefficient of nonlinearity was calculated and its
value proved to be equal to unity; that is, our model is
close to linear and the calculated ellipse correspond to
the correct confidence regions. This result was sup-
ported by the method of statistical modeling in [14].

REAL EXAMPLE

To check the correctness of the approach we took
data from [6, 15] where a set of IR spectra for 2,5-di-
tert-butyl-1,4-benzoquinone epoxidation was consid-
ered. The real experimental process is described by a

two-step reaction (1). The reactants, measurement pro-
cedures and other details of the experiment are
described in detail in [6]. Raw experimental data can be
found in [16]. In that paper, 240 spectra were reported
that were recorded in the range 800–1100 nm with a
1.0-nm step. The reaction time was 1200 s, and the
measurements were carried out each 5 s.

Raw spectral data were preprocessed according to
the procedure described in [6]. It can briefly be
described as follows. The fourth spectrum (at t = 20 s)
is used as base one and subtracted from all other spec-
tra. Then, for these spectra, the second derivatives are
calculated using the Savitzky–Golay filter [17] with a
15-point window. Finally, we used a narrow range of
wavelengths in calculations 860–880 nm. Figure 7
shows these data.

Data were processed using the SBE procedure with
“direct” and “optimal” orders of wavelengths. In this
example spectral parameters p, q, and r may be nega-
tive; therefore, no constraints were imposed. The
results of the “direct” procedure are shown in Fig. 8,
which illustrates how estimates and their accuracy
change in the course of the successive procedure. The
plot is constructed as in the case of Fig. 3. The final esti-
mates of rate constants, achieved at the last step for
wavelength 880 nm were k1 = 0.267 ± 0.015 min–1 and
k2 = 0.095 ± 0.010 min–1. Here, the standard deviations
are also shown. The correlation coefficient is r = –0.18.
The “optimal” SBE procedure gave the following val-
ues: k1 = 0.238 ± 0.015 (min–1), k2 = 0.102 ± 0.010 min–1,
and r = –0.22.

It is interesting to compare these results with analo-
gous estimates obtained using other, conventional
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Fig. 4. Intermediate results for the “optimal” order of wavelengths: (1) k1 estimates, (2) k2 estimates; (1', 1'', 2', 2'') boundaries of
the regions of standard deviations; (1''', 2''') “true” values of parameters.



KINETICS AND CATALYSIS      Vol. 45      No. 4      2004

ON ONE METHOD OF PARAMETER ESTIMATION 461

methods using the same set of experimental data. These
methods were described in detail in [15]; therefore we
only provide here a brief reminder.

The classical curve resolution (CCR) method is an
iterative procedure that exploits the linearity of model (3)
with respect to spectral parameters. The application of
this method usually assumes that the spectra of initial
species A and product C are known and the spectrum of
the intermediate species B and the rate constants are
unknown. Upon choosing some initial values of the rate
constants, one may estimate the spectral parameters of
the intermediate species using the standard LSM and

construct an approximate matrix  of individual spec-
tra (constrained by the fact that the spectrum of the
intermediate species is nonnegative). Then, using this
matrix, the rate constants are made more exact using
the Levenberg–Marquardt method [18, 19]. The algo-
rithm is repeated unless the process converges.

The weighted curve resolution (WCR) method [20]
is also iterative and unites a formal approach that uses
the singular decomposition of the data matrix Y and a
kinetic approach for calculating the matrix of concen-
trations C as in the CCR method. In contrast to CCR,
the use of the WCR method does not require the knowl-
edge of individual spectra of species A and C. However,
there are no strict conditions that guarantee the conver-
gence of the CCR and WCR procedures.

The above methods belong to the so-called 2-way
methods. They are in contrast to 3-way methods, which
are used more widely. In the 3-way methods, each com-
ponent of model (3) is replaced by a 3D matrix (tensor).
To form a tensor, the initial data array is divided into
two subarrays using a time shift. Then, the superposi-
tion of these subarrays forms a 3-way model. The sim-
plest of these methods is the generalized rank annihila-
tion method (GRAM) [21]. This one is based on a for-
mal approach in which a simple equation is used:

which shows that the rate constant of the first-order
reaction can be determined from the ratio of the initial
and shifted exponents. The GRAM is a very fast itera-
tive method, and this is its main advantage. If the level
of noise in spectral data is high, the accuracy is low. In
that case GRAM estimates can be used as the initial
approximation for the iterative formal LM–PAR
method [6]. It improves GRAM estimates using the
Levenberg–Marquardt algorithm [18, 19] and the pro-
cedure PARAFAC [22]. Note that both GRAM and

P
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Fig. 5. Model spectra of reagents (a) A, (b) B, and (c) C
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“true” spectrum (points 2). Regions 2', 2'' represent three
standard deviations.
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LM–PAR can only be applied to pseudo first-order
kinetics.

Estimates obtained by different methods are shown
in Fig. 9 where each method is represented by a confi-
dence ellipse (for a probability of 0.95) constructed
using the data from [15]. Data for ellipse 5, which cor-
responds to the optimal SBE method, are described
above. Comparison of the size and forms of ellipses
allows for comparison of the methods. Thus, it can be
seen that ellipses 1 and 5 have the smallest size and the
most round shape. This means that the SBE method
produces the smallest variances and correlations of all
the methods considered here and that its results are
close to the results of the CCR/LSM procedure. It is
well known that the LSM is optimal, although this

method is unreliable in the case of highly dimensional
data. The properties of the SBE method are similar to
the properties of the LSM, but SBE is more stable.

CONCLUSIONS

The SBE method can be applied in determining the
rate constants of chemical reactions using spectral data
for the case when individual spectra of the reactants are
unknown. This is a rather general approach and it can
be used for any kinetic model. The reliability of the
method was demonstrated using a simulated and a real
example. The simulated example showed that the pro-
posed method is efficient for both the case of a small
number of observations and for the case of strongly
overlapping spectra. It was also shown that the SBE
method gives results close to those obtained using the
conventional LSM. The results using SBE for the real
example suggest that this method provides the smallest
errors compared to other conventional procedures. It is
important that the method is Bayesian in form but not
in essence. This means that it can be used without
assuming any subjective a priori information. Each ele-
ment of the a priori information is constructed using the
result of the preceding step of the procedure and only
the form of application of this information is dictated
by the Bayes theorem. No additional assumption (like
the number of principal components, time shift, or the
first order of the reaction) should be made for the use of
this method.

The SBE method is a rather fast method for obtain-
ing estimates but slower than the LSM. The ratio of cal-
culation time tSBE/tLSM can be estimated [23] as
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, where p is the number of rate constants

(steps) and l is the number of reactants. For the two-step
reaction this ratio is 4.6, although in our examples it
was close to 2.

SOFTWARE

All calculations were carried out using the FITTER
software [24, 25] for MS Excel.

APPENDIX

The Method of Successive Bayesian Estimation (SBE)

Let us consider the conventional regression task:

yi = f(xi, a) + εi, i = 1, …N, e ~ N(0, σ2I),

where a = (a1, …, ap)t is the vector of the unknown
parameters and σ2 is the unknown variance of error. The
corresponding likelihood function (the argument y is
omitted) has the following form:

(7)

where

(8)

is the sum of squares. Using the MLM for function (7),
we obtain the following values:

Estimates of parameters a,

 = S(a). (9)

1 p
l
---+ 

  3

L0 a σ2,( ) 2π( ) N /2 – σ N– S a( )
2σ2
-----------– 

  ,exp=

S a( ) yi f i–( )2

i 1=

N

∑=

â minarg

The Fisher matrix A, which characterizes the accu-
racy of the estimate

(10)

This (p × p) matrix is the Hessian of the function S(a)
in the Gauss–Newton approximation [12], and if it is
invertible, then cov( ) = σ2A–1.

The variance estimate σ2

(11)

where Nf is the number of degrees of freedom (NDF)
for estimate (11):

Nf = N – p. (12)

Near the maximum, the likelihood function can be
approximated by the expression

(13)

Let us consider the case when the a priori informa-
tion is available and described by some distribution
h(a, σ2). Then, the likelihood function takes the form

L(a, σ2) = h(a, σ2)L0(a, σ2). (14)

Let us construct the distribution function h using
information consisting of the following values corre-
sponding to the values in expressions (9)–(12):

A VtV, where Vαi

f xi â,( )∂
aα∂

---------------------= = ,

α 1 … p; i, , 1 … N ., ,= =

â â,

s2 S â( )
N f

-----------,=

L0 a σ2,( ) 2π( ) N /2 – σ N–≈

× s2

2σ2
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–0.05
0.15

0 0.05 0.10 0.15 0.20 0.25

0.20

0.25

0.30

0.35
1

2

3

4

5

k2

k2

Fig. 9. Estimates obtained for the real example by different methods: (1) CCR, (2) WCR, (3) LM-PAR, (4) GRAM, and (5) SBE.
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(1) a priori values of parameters

b = (b1, …, bp)t, (15)

(2) a priori information matrix

H = {hαβ}, α, β = 1, …, p, (16)

(3) a priori variance value

(17)

(4) and a priori NDF

N0. (18)

A priori information involving all these four values is
called information of the first type. Sometimes variance
(17) and NDF (18) are not available. In this case infor-
mation is called information of the second type.

In the Bayesian approach, the value a can be consid-
ered (see (13)) as a normal random vector with expec-
tation b and the accuracy matrix γH

(19)

where R(a) is the quadratic form and

R(a) = (a – b)tH(a – b). (20)

The multiplier γ depends on the type of information and

is equal to  for type 1 and γ = 1 for type 2.

The a priori distribution of variance σ2 can be
expressed in terms of function χ2 and the values (17)
and (18)

(21)

By combining (19) and (21) with equation (14), one can
describe the likelihood function as

s0
2,

a N b γH,( )∼ γ p

2π( )p
------------------ detH

γ
2
---R a( )– ,exp=

γ
s0

2

σ2
-----=

σ2 2N0s0
2( )

N0

2
------

Γ
N0

2
------ 

 
------------------------σ

N0– 2–
N0

s0
2

2σ2
---------–

 
 
 

.exp∼

(22)

taking into account a priori information of type 1 and as

(23)

taking into account a priori information of type 2. Mul-
tipliers ë1 and ë2 are not important, because they are
independent of both a and σ2.

The MLM estimates are a point in which the likeli-
hood function has a maximum. It can easily be shown
that it corresponds to the minimum of some objective
function Q(a). By differentiating (22) and (23), we
obtain that the objective function takes the form

Q(a) = S(a)+B(a) (24)

for the information of type 1 and

Q(a) = S(a)B(a) (25)

for information of type 2. Here B(a) is the Bayesian
term, which is

B(a) = [N0 + R(a)] (26)

for information of type 1 and

(27)

for information of type 2. Some essential statistics of
the MLM with a priori information are described in the
table.

In the SBE method, the initial array of data is sepa-
rated into parts (series) that are processed in a succes-
sive manner. At each step (excluding the first one) the
MLM is applied with a priori information constructed
from the results of the preceding step. Let us illustrate
this.

Suppose we have statistics (see table) obtained after
estimation at the ith step. They can be called a posteri-
ori information. This information corresponds to the

L0 a σ2,( )
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Statistics obtained by the maximum likelihood method with a priori information

Statistics A priori information of type 1 A priori information of type 2

Parameter estimates

Q(a) = S(a) + B(a) Q(a) = S(a) + B(a)

Fisher matrix A = VtV + 

Variance estimates
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2 Q â( )

N f
------------= s

2 S â( )
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values in expressions (15)–(18) and, of course, can be
used as a posteriori information at the next (i + 1)th
step. However, it is necessary to make some important
details more exact.

Often, each series of data is described by its own
regression function fi(x, ai), which depends on both
common and partial parameters.

ai = (a1, …, ar, ar + 1, …, )t.

The subset of parameters a1, …, ar is called common
because each regression function fi, i = 1, …, M
depends on all these parameters. On the other hand, the
subset ar + 1, …,  is called specific because each such
subset of parameters is only present in the single func-
tion fi.

In constructing a priori information, it is necessary
to separate the portion of a priori information that cor-
responds to common parameters. It should be preserved
for further calculations, while the portion correspond-
ing to partial parameters should be deleted. The a pos-
teriori Fisher matrix A (the subscript denoting a step i
is omitted for simplicity) can be presented as the block
matrix

where A00 is a square (r × r) matrix corresponding to
the common parameters; A11 is a square (pi  – r) × (pi –
r) matrix corresponding to the partial parameters; and
A01 is a rectangular r × (pi – r) matrix. Then, the a priori
information matrix H is calculated from the matrix A
according to equation

(28)

where s2 is the a posteriori value of error variance. The
dimensionality of this matrix should correspond to the
number of parameters in the next series of data (that is,
(pi + 1) × (pi + 1)). Therefore, it should be supplemented
with zeros. The a priori values of the parameters are
recalculated in a similar manner:

(29)

For information of type 1, the a priori variance of error
is equal to the a posteriori value:

(30)

but the a priori number of degrees of freedom should be
recalculated as

Nf = Ni – N0 – pi + r, (31)

api

api

A
A00 A01

A01
t A11

,=

H
1

s2
---- A00 A01A11

1– A01
t– 0

0 0
,=

bα

âα, 0 α< r≤
0, r α pi 1+ .≤<




=

s0
2 s2,=

where Ni is the number of data and N0 is the a posteriori
value of NDF in the ith series. Thus, Eqs. (28)–(31)
determine the a priori information which is applied at
the next step of the SBE procedure.

Now let us compare the SBE procedure with the
conventional LSM. In the LSM, the objective function
takes the following form:

S(a1, …, aM) = S1(a1) + … + SM(aM). (32)

In the SBE method, this is a sum of squares that
involves only the jth series of data:

(33)

In the LSM, the estimate of parameters a has the form

(34)

and the estimate of the variance of error is

(35)

Here N = N1 + … + NM is the overall number of mea-
surements and p = r + p1 + … + pM is the total number
of parameters a.

The SBE procedure can be described in the form of
the following algorithm:

(1) The whole set of data is separated into M series;
(2) The first series is processed by the standard LSM

(8)–(10);
(3) A posteriori information is transformed into a

priori information (28)–(31);
(4) The next series is processed using the MLM and

a priori information (see table);
(5) Steps 3 and 4 are repeated unless the last series

is processed;
(6) The results are the SBE estimates.
Generally speaking, the SBE estimates depend on

the order the series are processed. However, in the lin-
ear case, it is possible to show that the SBE estimates
possess the following property [9].

Theorem. Let the regression functions fj(x, aj), j = 1,
…, M be linear with respect to parameters aj and the

error be homoscedastic (that is,  = … =  = σ2),
then the following estimates obtained by LSM and SBE
methods coincide:

(1) The estimates of common parameters;
(2) The covariance matrices of common parameters;
(3) The estimates of error variance; and
(4) The number of degrees of freedom.
Therefore, the SBE estimates are independent of the

order in which the data series are processed and these
properties are fulfilled asymptotically in a nonlinear
case.
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